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Abstract—Methyl(trifluoromethyl) dioxirane (1) gives direct chemo- and regioselective oxidation of methyleneadamantane oxide
(2) and isopropylideneadamantane oxide (3) in high yield under mild conditions. Secondary C�H are not appreciably oxidized and
high regioselectivities were observed for attack at tertiary C�H. © 2002 Elsevier Science Ltd. All rights reserved.

Perepoxides have been suggested to be intermediates in
the singlet oxygen reaction with certain alkenes. To test
the existence of the perepoxide, several groups
employed the oxidation of epoxides with oxygen-trans-
fer reagents such as ozone, ozone or pyridine N-oxide
with irradiation, m-chloroperbenzoic acid (MCPBA),1

and atomic oxygen.2 The availability of dioxiranes 1
has driven the use of these powerful and selective3

oxidants to carry out a variety of synthetically useful
transformations.3,4 We wanted to explore the possibility
that the dioxiranes might oxidize epoxides to form
perepoxides (Scheme 1).

Dioxiranes (1) have also been shown to be useful
reagents for the selective oxidation of unactivated C�H
bonds under mild conditions.5–8 Regioselective bridge-
head functionalization of polycyclic compounds is an
important goal in synthesis of non-natural targets. Such
systems can further provide access to derivatives bear-
ing quaternary carbon centers, which are difficult to
synthesize by other methods.9,10

Several groups3–8,11,12 report that dioxiranes are efficient
reagents for electrophilic oxidation. Ab initio calcula-
tions have provided an explanation for O-atom inser-
tion into hydrocarbon C�H bonds by electrophiles and
peroxides. These studies indicate a non-radical,
‘oxenoid’ mechanism for the O-atom insertion by the
dioxiranes into the unactivated C�H bonds of hydro-

carbons.11,12 Dioxiranes are sensitive to steric and
stereoelectronic demands during oxidation.11

In this context, it appeared interesting to investigate the
reactions of dioxiranes with adamantylidene epoxides.
Formation of perepoxides should lead to relatively
stable dioxetanes,13 but if this reaction should fail,
oxyfunctionalization would be expected. These target
molecules are of interest for mechanistic evaluation14,15

and the synthesis of novel pharmaceuticals.16 We report
that dioxirane 1 (Scheme 2) does not give dioxetanes
with two adamantylidene epoxides but instead gives

Scheme 1.

Scheme 2.
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regioselective monooxyfunctionalization of methyl-
eneadamantane oxide (2)17 and isopropylideneadaman-
tane oxide (3).18

Treatment of 2 with a 0.69 M solution of 1 (1.4 equiv.)
under the conditions given below19 resulted in ca. 95%
substrate conversion within 2 h (Scheme 3), yielding the
monoalcohol Z-5-hydroxymethyleneadamantane oxide
(4a)20 (90%) and the other stereoisomer, E-7-hydroxy-
methyleneadamantane oxide (4b)21 (10%) (GC analy-
sis). Column chromatography of this mixture on silica
gel gives 401 mg of 4a (78% isolated yield) and 100 mg
of a mixture of 4a and 4b.

For 4a, only the tertiary C�H was oxidized to an OH.
In fact, the 13C NMR spectrum showed two C�H
signals (� 37.98, 29.37) and three C�O signals (� 67.30,
62.95, 54.29). However we could not differentiate which
tertiary hydrogen (C5-H or C7-H) was oxidized by
NMR analysis. The structure of 4a was therefore estab-
lished unambiguously by X-ray crystallography (Fig.
1).22

Unfortunately, chromatographic purification of the
minor isomer 4b was unsuccessful. The 13C NMR spec-
trum of the mixture of 4a and 4b shows eight 13C NMR
signals different from 4a: two C�H signals (� 37.19,
29.19,) and three C�O signals (� 67.56, 63.54, 54.88).

Epoxide 3 was reacted with a 0.22 M solution of 1
under the same conditions as 2 (Scheme 4). The GC/
MS analysis revealed that after 1 h the conversion was
70%.19 Column chromatography of this mixture on
silica gel gives 150 mg of 3 followed by 245 mg (60%
isolated yield) of Z-5-hydroxyisopropylideneadaman-
tane oxide (5a)23 and 135 mg (40% isolated yield) of
E-7-hydroxyisopropylideneadamantane oxide (5b)24 (Z/
E assignments were made by analogy with 4).

For each compound the 13C NMR shows nine signals,
three quaternary carbons bonded to oxygen, two ter-
tiary C�H, three secondary CH2 and one CH3. These
spectra are similar to those of 4a and 4b except for the
methyl group. The fact that only a single methyl
appears in each shows that hydroxylation occurs on the
symmetry plane.

The structural information obtained from NMR and
X-ray analysis was further confirmed by the identifica-

Figure 1. Structure of compound 4a.

tion of the carbonyl compounds resulting from the
cleavage of these oxides with periodic acid. Following
the general procedure described by Ceruti et al.,25 0.4
mol equiv. of the corresponding oxide were added to a
suspension of periodic acid (10 mL), and the mixture
was stirred at room temperature until reaction was
complete (TLC, silica gel plate monitoring). The crude
reaction mixture was examined with 1H NMR. The
cleaved product shows signals at 2.62 ppm (2H), � to
C�O and 2.35 ppm (1H), tertiary C�H at C-7 for
5-hydroxy-2-adamantanone (6)26 (Scheme 5).

The chemo- and regioselective oxidation of unactivated
C�H bonds to alcohols is difficult to achieve in good
yield using common oxidizing agents.27 The data pre-
sented demonstrate that the application of dioxirane 1
to the chemoselective oxidation of adamantyl epoxides
leads to epoxy alcohols in good yields, without any
undesired side reactions. High regioselectivity for ter-
tiary over secondary C�H insertion in the oxidation of
substrates 2 and 3 was obtained, in agreement with the
literature.6,7 It appears that the oxiranil ring has a
significant deactivating effect (presumably electrostatic)
on the nearby hydrogens, leading to the exclusive oxi-
dation of C5-H and C7-H with Z/E diastereoselectivity
in a concerted ‘oxenoid’ O-insertion by dioxiranes. The
high Z-diastereoselectivity in attack on 2 is surprising;
previous work has shown a preference for Z attack to

Scheme 3.
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Scheme 4.

Scheme 5.

oxygen substituents,7 but not so large. The difference in
the stereoselectivity of attack on 2 and 3 is unexplained
so far. We are continuing to explore the cause of the
high selectivities observed in these reactions.
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